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a b s t r a c t

In this work we estimate the state of charge (SOC) of Ni–MH rechargeable batteries using the Kalman
filter based on a simplified electrochemical model. First, we derive the complete electrochemical model
of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes.
The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model
vailable online 18 May 2009
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followed by a static nonlinearity. Both parts are identified using the current and potential measured at the
terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity
together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental
results with commercial batteries are provided to illustrate the estimation procedure and to show the
performance.
east squared identification
alman filtering

. Introduction

The development of low-cost high capacity batteries is of great
mportance for large-scale production and application. Ni–MH bat-
eries based on a hydrogen storage alloy have received and still
eceive much attention because of their higher energy density,
uperior charge–discharge characteristics and freedom from toxic
aterials. The state of charge (SOC) of a rechargeable battery is an

mportant quantity as it is a measure of the amount of electrical
nergy available. In order to guarantee a good performance and
ifetime of the battery, the SOC is usually kept within appropriate
imits, for example 20% ≤ SOC ≤ 90%, so the estimation of the SOC is
ssential for the battery to operate within these safe limits. Battery
OC estimation using available potential and current measured at
he terminals of the battery is the goal of this paper.

There have been several approaches to estimate the state of
harge of a battery. In [1] a review of impedance measurements
o estimate SOC is presented. These approaches are based on the
ariation of the frequency response of the battery at different states
f charge and other physical variables. In [2] an observer for linear
ime variant systems was used to estimate the open circuit volt-

ge (OCV), which is related to the SOC, from an empirical battery
odel. Assuming observability of an extended model formulation,

oth parameters and state of charge are estimated at once. Plett [3]
ses a simple dynamical model of one state, the SOC, which is in
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fact the integral of the current. An empirical relationship between
SOC and measured current and potential is used together with the
extended Kalman filter (EKF). Further improvements were obtained
by adding new states related to the diffusional process inside the
electrodes. In a different approach, Barbarissi et al. [4], presents
the SOC estimation based on an electrochemical model taking into
account the kinetics of the reactions and the diffusional process
inside the electrode. The estimator used in this case consists of a
simulation of the electrochemical model with the measured cur-
rent/potential as inputs. SOC is estimated with the internal variables
obtained by simulation.

In this work we estimate the SOC of Ni–MH rechargeable bat-
teries based on an electrochemical model and using the Kalman
filter. The main contributions of this paper are the following: First,
the derivation of a complete model including both electrodes, Ni
and MH, absorption/adsorption processes and double layer capac-
ity. Second, the derivation of an electrochemical reduced order of
the battery as a Wienner model formulation. It consists of two parts,
a linear dynamic in cascade with a static nonlinearity. Third, we pro-
pose an identification procedure by using a simple 1-D optimization
procedure. Fourth, the SOC estimation is performed in the frame-
work of linear systems in which the estimation error bound, due
to the presence of disturbances, can be optimized using a Kalman
filter. The paper is organized as follows: In Section 2, the complete
model of both electrodes is presented including kinetics of reac-

tions, hydrogen diffusion process, and charge balances. Considering
the fact that it will be used for SOC estimation, the simpler reduced
order model is derived from the complete one. In Section 3, the
functional relationship between SOC and hydrogen concentration
is presented for different electrode geometries. In Section 4, the

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:milocco@uncoma.edu.ar
mailto:bcastro@inifta.unlp.edu.ar
dx.doi.org/10.1016/j.jpowsour.2009.05.005
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Nomenclature

an effective transfer area of Ni interface
am effective transfer area of MH interface
En(t) potential at Ni–electrolyte interface
Em(t) potential at MH–electrolyte interface
Ebat potential at the battery terminals
Eeq

n,ref
equilibrium potential of Ni interface at xref

n (0, t) =
0.5

Eeq
m,ref

Equilibrium potential of MH interface at xref
m (0, t) =

0.5
F Faraday constant
h sampling period
If1 (t) Faradaic current of Ni electrode
If2 (t) Faradaic current of MH electrode
Icn double layer capacitive current at Ni interface
Icm double layer capacitive current at MH interface
Ibat current at the battery terminals
I0
1ref

constant exchange current at Ni interface

I0
2ref

constant exchange current at MH interface
Jn(z, t) flux of hydrogen at position z of Ni electrode
Jm(z, t) flux of hydrogen at position z of MH electrode
Jn(zi, t) flux of hydrogen at ith slice of Ni electrode
Jm(zi, t) flux of hydrogen at ith slice of MH electrode
Ki(t) reaction rate
L order of the Taylor expansion series
t time
xn(z, t) H fractional concentration at position z of Ni elec-

trode
xm(z, t) H fractional concentration at position z of MH elec-

trode
xn(zi, t) H fractional concentration at ith slice of Ni electrode
xm(zi, t) H fractional concentration at ith slice of MH elec-

trode
xn

0(t) short notation of xn(z0, t)
xi(t) ith state of simplified model
x(t) state vector of simplified model
x(kh) discrete-time state vector of simplified model
x̂(kh) Estimated state vector using Kalman filter
x0(kh) discrete-time state x0(t)
xref

n (0, t) H reference fractional concentration at Ni interface
xref

m (0, t) H reference fractional concentration at MH interface
xn(t) vector of concentrations in Ni
xm(t) vector of concentrations in MH
x̃(kh) estimation error vector
z spatial position along axis z
zi discrete-spatial position of slice i along axis z
�n(t) incremental potential at Ni–electrolyte interface
�m(t) incremental potential at MH–electrolyte interface
�(t) fractional surface concentration of MHad

�ref surface concentration at the equilibrium reference
state

s
c
t
S
l
g
u
p

an interstitial site in the alloy, located just beneath the surface, and
S is an empty interstitial site. The process is reversed during charge
with rate constants K−i(t) = k0

−i
exp(b(˛i − 1)E(t)) for i = 1, 2, and

k0
−3 for reactions (1), (2), and (3), respectively. There are also sec-

ondary reactions due to oxygen evolution at the nickel electrode
�g parameter vector of the static nonlinearity
�gi parameter vector of the software sensor

implified model is identified using a simple 1-D optimization pro-
edure. The parameters of a proposed software sensor – to estimate
he concentration at the surface of the Ni electrode to be used in

OC estimation – is also obtained in this section. In Section 5, a
inear Kalman filtering strategy for the state estimation of hydro-
en concentration is presented. Three experimental examples are
sed to illustrate the procedure and to show the performance of the
roposed technique.
er Sources 194 (2009) 558–567 559

2. Model formulation

The nickel/metal hydride battery consists of a nickel positive
electrode and a metal hydride negative electrode separated by a
porous inert separator, being the whole assembly immersed in a
highly concentrated, usually 30 percent of the weigh, KOH aqueous
electrolyte. In Fig. 1 a scheme is shown. The main reactions during
discharge are the reduction of nickel oxyhydroxide in the positive
electrode and the oxidation of the metal hydride in the negative
one, [5]. An adsorption/absorption reaction mechanism governs the
insertion of hydrogen atoms in the metal [6,7]. The set of reactions
are given as follows:

NiOOH + H2O + e−K1,disch.
� Ni(OH)2 + OH− (1)

MHad + OH−K2,disch.
� H2O + M + e− (2)

M + SHab

k0
3

,disch.

� MHad + S, (3)

being the reaction rates Ki(t) = k0
i
exp(b˛iE(t)) for i = 1, 2 for elec-

trochemical steps in (1) and (2) with constants k0
i

and b = F/RT ,
k0

3 is the constant reaction rate due to the chemical reaction in (3),
E(t) the potential at the electrode interface, being En(t) and Em(t) the
potential at Ni and MH interfaces, respectively, and ˛i ∈ [0, 1] are the
symmetry factors. MHad is an adsorbed hydrogen atom at an active
site on the alloy surface, and SHab is a hydrogen atom absorbed at
Fig. 1. Schematic diagram of the Ni/MH cell.
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nd oxygen reduction at the metal hydride electrode. However, in
he operative SOC range of the battery (10–90%) the secondary reac-
ions are insignificant compared with the main reaction. Since we
re interested in modeling the dynamics in such range, the sec-
ndary reactions will be neglected in this work. Thus, the model
onsiders the kinetics of the reactions taking place at the electrodes
escribed by Eqs. (1)–(3). In order to complete the dynamics of the
lectrochemical processes involved, mass transport of H atoms in
he metal hydride particles and Ni active material must be taken
nto account. Mass transport shall be modeled as a diffusional pro-
ess and described in terms of Fick’s laws. We will describe each
rocess in detail.

Considering the global process of reaction (1) as the reaction of
“free hydrogen site”, NiOOH, with H2O to produce an “occupied
ydrogen site”, Ni(OH)2 and OH−, the faradaic current related to
eaction (1) at the Ni electrode is governed by the following charge
alance [8,9]:

f1 (t) = F (K1(t)xn(0, t) − K−1(t)(1 − xn(0, t))) , (4)

here xn(0, t) = cn(0, t)/c̄n(0, t) is the fractional concentration of
ydrogen atoms in the Ni active material at the electrochemical

nterface (Ni oxide/electrolyte interface, named spatial position
= 0 at time t). The hydrogen concentration, cn(z, t), and its maxi-
um admissible value, c̄n(z, t), define xn(z, t) = 1 and xn(z, t) = 0

or maximum and zero concentration at position z and time t,
espectively. Let us introduce the incremental potential �n(t) =
n(t) − Eeq

n,ref
as the difference between the electrode potential and

he equilibrium potential at the reference state xref
n (z0, t) = 0.5.

eing the exchange current I0
1ref

defined by the expression

0
1ref = Fk0

1e
b˛1Eeq

n,ref = Fk0
−1e

b(˛1−1)Eeq
n,ref , (5)

y replacing �n(t) in the expression of K1 and K−1 in (4) and using
5) the current at the Ni electrode can be rewritten as

f1 (t) = I0
1ref (eb˛1�n(t)xn(0, t) − eb(˛1−1)�n(t)(1 − xn(0, t))) . (6)

Using the same notation, the faradaic current balance at the MH
lectrode is given by reaction in (2) and can be written as

f2 (t) = −F
(

K2(t)�(t) − K−2(t)(1 − �(t))
)

, (7)

eing �(t) the fractional surface concentration of MHad species. As in
he Ni–electrode, we define �m(t) = Em(t) − Eeq

m,ref
as the difference

etween the electrode potential and the equilibrium potential at
he reference state xref

m (0, t) = 0.5 (the fractional concentration of
ydrogen atoms, SHab, at the metal hydride particles–electrolyte

nterface). Accordingly, the exchange current is given by

0
2ref = Fk0

2e
b˛2Eeq

m,ref �ref = Fk0
−2e

b(˛2−1)Eeq
m,ref (1 − �ref ), (8)

here �ref is the surface concentration at the equilibrium reference
tate. Taking into account the fast dynamical response of the hydro-
en absorption reaction (HAR step given by reaction 3), equilibrium
ay be assumed and the following relationship is fulfilled [10]:

0
3(1 − �(t))xm(0, t) = k0

−3�(t)(1 − xm(0, t)). (9)

y replacing �(t) from (9) in (7) and taking into account that
ref = 1/(K + 1) with K = k0

−3/k0
3 – obtained with xref

m (0, t) = 0.5 in
9)– and using (8), the expression of the faradaic current at the MH
lectrode can be written as
f2 =
I0
2,ref

(K + 1)

xm(z0, t) + K(1 − xm(z0, t))
(xm(0, t)eb˛2�m

− (1 − xm(0, t))eb(˛2−1)�m ). (10)
Fig. 2. Spatial discretization of the active film.

Considering the current during discharge to be positive, the
complete current and potential balance is given by the series of
both electrodes fulfilling

Ibat = −If1 − Icn = If2 + Icm (11)

Ebat = En − Em − IbatRi. (12)

All the variables are function of time. Ibat and Ebat stand for the
current and potential at the battery terminals; Ri is the resistance of
the electrolyte; and Icn, Icm are capacitive currents due to the double
layer at the Ni and MH electrode interface respectively, having the
following expression:

Icn = dEn

dt
Cdl,n; Icm = dEm

dt
Cdl,m; (13)

where Cdl,n and Cdl,m are the double layer capacities of the electrode
surfaces. The dynamics of hydrogen concentration in the electrodes
are given by diffusional processes described by Fick’s laws. The Ni
electrode, represented schematically in Fig. 1, shall be described as a
porous metallic structure, where the active material is deposited on
the cylindrical pores of mean dimensions [5]. The active material on
the pore walls forms a cylindrical film of average thickness, d = Re −
Ri, hydrogen diffusion taking place mainly in the radial direction.
In a similar way, but considering spherical geometry particles, the
hydrogen diffusion in metal hydride electrode is governed by Fick’s
laws. The analytical solution of Fick’s laws is complex [11]. Then, in
order to have a working expression of the diffusional processes, they
can be approximated into a set of ordinary differential equations
by using a spatial discretization. The spatial discretization is a very
well-known method to approximate partial differential equations
in ordinary differential equations. For details see [12,13], and also
applied to Ni–MH batteries in [4]. Each diffusional process can be
discretized along the space variable z by considering N slices of the
metal with thickness �z, as illustrated in Fig. 2. By denoting spatial
position of ith slice as zi, the dynamics of diffusional processes for
both electrodes can be written as follows (see the Appendix A for a
detailed derivation):

dxn(t)
dt

= Anxn(t) + BnIf1 (t) (14)

xn
0(t) = Cnxn(t) (15)

where xn
0(t) is a short notation of xn(z0, t), and

An = ˛

⎡
⎢⎢⎢⎢⎣

−d0 d0 0 · · · 0 0 0

1 −(1 + d1) d1 · · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

⎤
⎥⎥⎥⎥⎦ ,
0 0 0 · · · 1 −(1 + dN−1) dN−1

0 0 0 · · · 0 1 −1

Cn = [1 0 · · · 0], Bn = [ˇ, 0, · · · , 0]T ; xn(t) = [xn(z0, t), xn(z1, t), . . . , xn(zN , t)]T ,

(16)
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the product of the constant current and the time required to reach
the maximum charge, starting with battery completely discharged,
Q0 = 0. Thus, SOC is the unity for battery completely charged and
zero for completely discharged. We derive the expression for SOC
in the nickel electrode by integrating, with respect to time, both
Fig. 3. Ni–MH battery model.

ith ˛ = Dn/�z2, Dn is the diffusion coefficient, �z = Re−Ri
N+1 , being

e and Ri the exterior e interior radium in the cylindrical geome-
ry, ˇ = 1/(Fanc̄n�z) with an the effective transfer area, and di =
i+1/zi = (2i + 3)/(2i + 1) for 1 ≤ i ≤ N.

A similar approach can be followed for the metal electrode (see
he Appendix A) by replacing �z = Rp

N+1 with Rp the radium of the

phere, and di = z2
i+1/z2

i
= (2i + 3)2/(2i + 1)2 for 1 ≤ i ≤ N.

Finally, the complete battery model is then given by Eqs. (6),
10)–(16). The equations of the diffusional process for the metal
lectrode, which are similar to (14)–(16), are also included in the
omplete battery model and depicted in Fig. 3.

.1. Reduced complexity model

There are different reasons that justify the use of a simplified
odel to be used for SOC estimation. We present two important

rguments: (i) In commercial Ni–MH batteries usually the nega-
ive electrode (MH electrode) has a higher effective capacity than
he positive one (nickel oxyhydroxide/ nickel hydroxide electrode),
eing quite reasonable to assume that variations of the fractional
ydrogen concentration in the metal hydride electrode may be
eglected with respect to variations in the Ni electrode. Thus, the
i electrode is sufficient to describe the dynamics of the energy

torage in the battery. Consequently, the changes in Ebat are mainly
ue to changes in En, as reported in [5]. Accordingly, next, poten-
ial changes at the MH electrode shall be neglected, considering
m = Eeq

m,ref
. (ii) The maximum current is bounded for construc-

ive reasons. Then, charge and discharge are mainly due to the

ow frequency components of the current, Ibat . Since the current
assing throughout the double layer capacity contains mainly high
requency components, if Ibat is conveniently “low pass filtered”,
s described in Section 5.1, there are no significant differences in
OC estimation by neglecting the capacitive current Icn and con-
er Sources 194 (2009) 558–567 561

sidering Ibat(t) � −If 1(t) in (11). Then, in order to get a simplified
model, we can use Ibat(t) = −If 1(t) in Eq. (6) as input and potential
Ebat = Eeq

n,ref
− Eeq

m,ref
+ �n(t) − IbatRi as output. However, to use this

approach it is necessary for �n(t) in (6) to be a function of x0 and
Ibat . In other words, there should be a unique value of �n(t) for each
couple of values (xn

0, Ibat). In order to show that this requirement is
fulfilled, let us start by noting that in (6) the concentration xn

0 is a
function of the couple (�n, Ibat), as follows:

xn
0 =

−Ibat + I0
1ref

eb(˛1−1)�n

eb(˛1−1)�n + eb˛1�n
= f (�n, Ibat). (17)

A continuous function f is one to one (and hence invertible) if and
only if it is either strictly increasing or decreasing with not local
maxima or minima. In our case the derivative with respect to �n

after some algebraical manipulation can be written as

∂xn
0

∂�n
= b(˛1 − 1)eb˛1�n (1 − xn

0) − xn
0˛1be˛1b�n

eb˛1�n + eb(˛1−1)�n
. (18)

Taking into account that xn
0 ∈ (0, 1), and ˛1 ∈ (0, 1), the deriva-

tive above is always negative. Thus, the inverse function �n =
f −1(x0, Ibat) exists, hence there is only one value of �n for each
couple (xn

0, Ibat).
Taking into account these considerations, the complete model

depicted in Fig. 3 can be simplified as shown in Fig. 4. We will show
it later that experimental results are accurately represented by the
proposed model.

Remark 1. The simplified model is a cascade of a linear time
invariant dynamical system and a static nonlinearity. Such kind of
model is called Wiener model. A Wiener model consists of a linear
dynamic system followed by a static nonlinearity. The input and
output are measured, but not the intermediate signal. Then, the
identification of both parts as black boxes are difficult to obtain [14].
Using the electrochemical model we propose a successful approach
in the next section.

Before to proceeding with the identification of the model param-
eters, we show in next section that the gain ˇ in (16) can be known
directly from the structure of the diffusion model. Also we show
how it is related to a working expression to compute the SOC.

3. The state of charge

The SOC in the battery is determined by integrating the current
as follows:

SOC(t) = 1
Qmax

(
Q0 +

∫ t

0

Ibat(�)d�

)
, (19)

where Q0, and Qmax are the initial and maximum electrode charge.
The quantity Qmax is called capacity of the battery and it is defined as
Fig. 4. Simplified battery model.
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(v) Using the discrete-time model, the M samples of Ibat(kh), and
Ebat(kh), and the known initial concentrations, obtain the estimated
sequence x0(kh) by simulation using (30) and (31). (vi) Using the M
62 R.H. Milocco, B.E. Castro / Journal

ides of equation (14) in which we consider Ibat(t) = −If 1(t). Since
n the simplified model only the Ni electrode will be considered, the
ubindex of the fractional concentration will be dropped for clarity
s follows: xn(zi, t) will be denoted as xi(t), and vector xn(t) as x(t).
fter integrating and using (19), we have

(t) − x(0) =
∫ t

0

Ax(�)d� − BQmax(SOC(t) − SOC(0)). (20)

sing the elements of matrix A defined in (16), the previous is
quivalent to the following set of equations:

x0(t) = ˛d0

∫ t

0

(x1(�) − x0(�))d� − ˇQmax(SOC(t) − SOC(0)) + x0(0)

x1(t) = ˛

∫ t

0

(x0(�) − x1(�)) + d1(x2(�) − x1(�))d� + x1(0)

... =
...

xN−1(t)=˛

∫ t

0

(xN−2(�)−xN−1(�))+dN−1(xN(�)−xN−1(�))d�+xN−1(0)

xN(t) = ˛

∫ t

0

(xN−1(�) − xN(�))d�.

(21)

By replacing the integral term of xN(t) from the last equality in
he expression of xN−1(t) we have

N−1(t) = ˛

∫ t

0

(xN−2(�) − xN−1(�))d� − dN−1xN(t) + xN−1(0).

y following the procedure from bottom to top on the set of equa-
ions (21), the following equality is obtained:

OC(t) = cnt − x0(t) + d0x1(t) + d0d1x2(t) + · · · + d0· · ·dN−1xN(t)
ˇQmax

,

(22)

here the constant cnt is given by

nt = x0(0) + d0x1(0) + d0d1x2(0) + · · · + d0· · ·dN−1xN(0)
ˇQmax

+ SOC(0)

(23

onsidering the stationary case, zero current in the limit when time
oes to infinity, the concentrations xi(∞) for 0 ≤ i ≤ N are equal. For
attery completely charged all the concentrations are equal to zero
hich corresponds to SOC equal to the unity and vice versa. Then,

rom (22) a set of two equations with two unknowns, cnt and ˇ, can
e formed. The solution gives cnt = 1 and

= 1 + d0 + d0d1 + · · · + d0· · ·dN−1

Qmax
(24)

inally, the expression for SOC(t) is given by

OC(t) = 1 − x0(t) + d0x1(t) + d0d1x2(t) + · · · + d0· · ·dN−1xN(t)
ˇQmax

(25)

ith ˇ given by (24).
emark 2. Considering different steady states, (Ibat = 0) at the
quilibrium (t → ∞), the charge balance (6) gives the relationship
etween OCV and SOC, often used to compute the SOC, as follows:

0(∞)eb˛1�n = (1 − x0(∞)) eb(˛1−1)�n (26)
er Sources 194 (2009) 558–567

which – using the fact that SOC = 1 − x0(∞) – leads to the fulfill-
ment of the following SOC/OCV relationship:

� = Ebat − Eeq
m,ref

+ Eeq
n,ref

= 1
b

log
(

1 − x0(∞)
x0(∞)

)

= 1
b

log
(

SOC(∞)
1 − SOC(∞)

)
= f −1(x0, 0) (27)

In the next section we identify the parameters of the model to
be used for SOC estimation.

4. Model parameter identification

The model parameters that remain to be identified are ˛ in
(16) and the parameters corresponding to the static nonlinearity.
The static nonlinearity is a soft function that can be well approxi-
mated by using different approaches. We choose to approximate the
function with a Taylor series expansion of multivariable functions,
which can be written as a linear regression problem as follows:

Ebat = −Eeq
m,ref

+ Eeq
n,ref

− IbatRi + f −1(x0, Ibat) = g(x0, Ibat) = ϕg�g,

(28)

where �g is a column vector of parameters and ϕg , a row vector of
signals as follows:

ϕg = [1, Ibat, x0, Ibatx0, I2
bat, x0Ibat, x2

0, higher orders];

�g =

⎛
⎝

�1
...

�L

⎞
⎠ , (29)

where L depends on the series order approximation of the static
nonlinearity. In expression (29) the ith element of �g is the deriva-
tive of ith order of the unknown function g(x0, Ibat) evaluated at
a given coordinates. We choose to expand around the stationary
coordinates (x0, Ibat) = (0, 0). Using this representation, we propose
the following procedure to estimate ˛ and �g: (i) Discharge com-
pletely and recharge with a known small amplitude current during
a given time. After a long resting time, the known stationary values
x(0) are reached. (ii) Excite the battery with a time varying cur-
rent and obtain a record of M sampled of both Ibat(kh), and Ebat(kh).
(iii) Choose an arbitrary value of the scalar ˛ within a given griding
interval. (iv) Using this value of ˛ in Eq. (14), obtain the zero-hold
discrete-time system as follows:

x((k + 1)h) = Adx(kh) − BdIbat(kh) (30)

x0(kh) = Cdx(kh), (31)

where h is the sampling period, and (Ad, Bd, Cd) is the zero-hold
discrete-time system obtained from (An, Bn, Cn) as follows [15]:

Ad = eAnh; Bd =
∫ h

0

eAsBnds; Cd = Cn; (32)

and x(kh) is the sampled vector of concentrations at times t = kh.
values of Ibat(kh), Ebat(kh), and x0(kh) obtained in the previous step,
the value of parameters �g are fitted by using the least squared
approximation as follows:

�g = (�T �)
−1

�T Y, (33)
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here

= [ϕg(1)T , . . . , ϕg(k)T , . . . , ϕg(M)T , ]
T

(34)

g(k) = [1, Ibat(kh), x0(kh), Ibat(kh)x0(kh),

2
bat(kh), x0(kh)Ibat(kh), x2

0(kh), higher order elements] (35)

= [Ebat(h), . . . ; Ebat(kh), . . . ; Ebat(Mh)]T . (36)

vii) Compute the sum of the least squared error of the estimation
s

M

i=1

e2
i = (Y − ��g)T (Y − ��g). (37)

ave the result, choose a new value of ˛ and return to step (iii). The
rocedure continues for all the griding values of ˛ in the consid-
red interval. Finally, we adopt the coupled ˛ and �g which gives
he lowest least squared error subjected to the constraints that the
imulated concentration x0(kh) lies in the interval [0, 1].

emark 3.

It is important to note that the computational complexity is 1-
D which is solved by performing steps (iii)–(vii) repeatedly for
different values of ˛ within the grid interval of one dimension. It
must also be noted that the reduced complexity is due to the fact
that we have used an analytical model description of the battery.
The surface concentration sampled sequence, x0(kh), is obtained
by simulation and it is unique and different for different values of
˛. The interval of possible values of ˛ can be known from the ana-
lytical expression ˛ = Dn(N + 1)2/(Re − Ri)

2 where typical values
of Dn are in the interval (10−9 to 10−10), N is given by the number
of slices of the spatial discretization, and (Re − Ri) depends on the
battery.
The identifiability is governed by the minimum least squared
problem (33) which states that the estimated vector �g converges
to the true value if the input Ibat is persistently excited (PE), which
means the current variations need to be rich enough to satisfac-
tory identify the parameters �g , [16,17].
Since the function x0 = f (�, Ibat) has inverse �n = f −1(x0, Ibat),
then, from (28) the function Ebat = g(x0, Ibat) has also inverse
given by x0 = g−1(Ebat, Ibat). Then, the value of parameters that
minimizes the Euclidean norm of the cost in (37) also minimizes
the Euclidean norm of the differences between the real and esti-
mated concentration x0(kh).
Since we are interested in low frequencies, a previous low pass
(LPF) filtering of sequences Ibat(kh) and Ebat(kh) must be done.
Some guidelines about how to choose the cut frequency of the
LPF will be given in the next section.

It is useful, for further use in SOC estimation, to have a practical
ay to estimate the value of x0(kh) from measurements Ebat(kh) and

bat(kh). To this end, we need to identify the inverse function x0 =
−1(Ebat, Ibat) which works in fact as a software sensor of concentra-
ion x0(kh). It can be done by using the estimated sequence x0(kh),

btained in the optimization procedure described before, and find-
ng the coefficients of the linear regression model of the inverse
unction x0(kh) = g−1(Ebat(kh), Ibat(kh)) ≈ ϕgi(kh)�gi = xm

0 (kh). The
stimated parameters �gi, in the sense of minimum least squared,
an be obtained in a similar procedure as the one explained above
ut replacing � and Y in (33), by

= [ϕgi(1)T , . . . , ϕgi(k)T , . . . , ϕgi(M)T , ]
T

(38)
Fig. 5. SOC estimation.

ϕgi(k) = [1, Ibat(kh), Ebat(kh), Ibat(kh)Ebat(kh), I2
bat(kh),

Ebat(kh)Ibat(kh), E2
bat(kh), higher order elements] (39)

Y = [x0(h), . . . , x0(kh), . . . , x0(Mh) ]T . (40)

Note that the estimated value xm
0 (kh) = ϕgi(kh)�gi, obtained from

the measured current Ibat(kh) and potential Ebat(kh), is an approxi-
mation of the true value x0(kh). It will be used, in next section, as a
software sensor of fractional concentration at the interface.

5. SOC estimation and results

The basic idea to estimate the SOC is to use the expression (25)
together with (24) employing estimated values of the vector con-
centrations x(kh) that will be named x̂(kh). To this end, let us have
first the estimated value of xm

0 (kh) as it was explained in the last
section. It is interpreted as the true value, x0(kh), corrupted by
measurement zero mean random noise, errors due to the imper-
fect interpolation, and possible unmodeled dynamics. Using this
measure the concentration vector x(kh) is estimated by means of
the Kalman filter. The equation of the Kalman filter are given by

x̂((k + 1)h) = Adx̂(kh) + BdIbat(kh) + Kk(xm
0 (kh) − Cdx̂(kh)) (41)

Kk = AdPkCd(R2 + CdPkCT
d )

−1
(42)

Pk+1 = AdPkAT
d + R1 − AdPkCT

d (R2 + CdPkCT
d )

−1
CdPkAT

d (43)

where Pk, R1, and R2 are the positive definite covariance matrices of
errors in the estimations, noise disturbances at the concentrations,
and measurement noise, respectively. Notice that the global conver-
gence is guaranteed since the diffusional process is linear. Moreover,
in the ideal case where the disturbances at the states and measure-
ment noise can be modeled as gaussian white noise with zero mean,
the error covariance matrix between real and estimated vector con-
centrations is given by E(x(kh) − x̂(kh))(x(kh) − x̂(kh))T = Pk in (43)
where E means expected value. No more details about Kalman filter
will be given since there is a wide reference to this respect. See for
example [15,3]. The complete scheme is depicted in Fig. 5.

The measure xm
0 (kh), provided by the software sensor and based

on data interpolation, is an approximation of the true state x0(kh).
This error affects the estimation of the vector x̂(kh) in (41). In order
to analyze how the estimation is affected by this error, let us assume
that the measure xm

0 (kh) consists of the sum of the true value, given
by x0(kh) = Cdx(kh), plus a difference given by �x(kh), which is
in fact the error introduced by the interpolation procedure. Then,

the error between the real and estimated concentrations can be
obtained by substracting (41) from (30) as follows:

x̃(kh + h) = x(kh + h) − x̂(kh + h) (44)

= (Ad − KkCd)x̃(kh) + Kk�x(kh) (45)
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Fig. 6. True and low pass filtered

y denoting F = Ad − KkCd, the solution of the above difference
quation is given by

˜(kh) = Fkx̃(0) +
k−1∑
j=0

Fk−j−1Kk�x (46)

t consists of two terms, the first is the transient due to the error at
he initial conditions x̃(0), and the second one is due to the uncer-
ainties in the software sensor �x. The transient is governed by
he eigenvalues of matrix F which are tuned by the gain Kalman

atrix Kk in a way that short transient need large values of Kk. The
econd term is a discrete-time convolution between the transient
nd the product of the gain matrix Kk by the interpolation error
x(kh). Then, large values of the gain matrix Kk produces short tran-
ient but increases the effect of measurement errors. Conversely, a
ow filter gain produces a long transition but mitigates the effect of
he uncertainties. Using the covariance matrix of the measurement
rror R2 = E(�x�T

x), the gain of the Kalman filter solve optimally

Fig. 7. SOC estimation for experiment 1. Upp
t and potential for experiment 1.

the tradeoff between both terms in (46) and it depends inversely
on R2 according with Eq. (42). In the next section we will use this
analysis to interpret the experimental results.

5.1. Experimental results

The examples presented in this paper are based on measure-
ments made in rechargeable batteries Duracell AAA/HR03/DX2400,
NiMH/1,2/800 mAh. The used experimental setup consists in a
power unit driven by a personal computer throughout an I/O card
with A/D and D/A conversions in a MATLAB environment. Three dif-
ferent experiments exciting the battery with a variant current load
(charge and discharge) using a sampling time of h = 8 s are pre-

sented. The first two experiments are used to identify the model
parameters (˛, �g) together with the software sensor parameters
�gi. Both experiments are also used to estimate SOC. In the third
experiment, the SOC is estimated using the values of the model
parameters identified with the first two experiments.

er, with R2 = 10. Lower, with R2 = 0.1.
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Fig. 8. True and low pass filtered current and potential for experiment 2.

2. Upp

a
r
b
e
b
r
e
p

s

w
T
p
o
f
U

Fig. 9. SOC estimation for experiment

Before each experiment the battery was discharged completely
nd recharged with a small amplitude known current. After a long
esting time, the stationary values x(0) were perfectly known. Then,
y integrating the current we also knew the real SOC. For each
xperiment current (Ibat) and potential (Ebat) at the terminal of the
attery were recorded. In order to estimate the SOC, first both cur-
ent and potential samples were low pass pre-filtered in order to
liminate the high frequency components. The filter used is a zero
hase shift filter with the following structure:

f (kh) = 1
201

100∑
i=−100

s(kh), (47)

here s(kh) is the sampled signal and sf (kh) is the filtered signal.

his filtering task can be done on line, at the same time that the sam-
les are obtained and considering, in our case, the necessary delay
f 100 samples due to the noncausality of the filter. The criterion
or choosing the cutoff frequency of the LPF depends on the battery.
sing the recorded files of current and potential, in the identifica-
er, with R2 = 10. Lower, with R2 = 0.1.

tion stage, we started with a low cutoff frequency and iteratively it
was increased until the error between the estimated and real SOC
reached some admissible bound.

After filtering the signals were re-sampled at period T = 5.33
min. The current and potentials together with their filtered version
for the three experiments are shown in Figs. 6, 8, and 10. Using
a partition number N = 30, the first and second experiments were
used to identify parameter ˛. By taking a value of Re − Ri = 10−3 cm,
the search interval of the 1-D optimization procedure was [0.1, 1]
giving ˛ = 0.397 and its corresponding �g and �gi. The value of ˇ for
the chosen model structure is 2.0855 × 10−4 coulomb.

With the identified values, SOC estimations were performed
using the first and second experiments. In all the experiments
the initial concentration values of the Kalman filter are arbitrar-

ily fixed in 0.1, 0.5, and 0.9. There were used two different values
of matrix covariance of the measurement error, R2 = 10, and R2 =
0.1, for computation of Kalman gain matrix Kk. Large value of
R2 gives small filter gain with relatively long transient and rel-
atively good match to the true SOC. Opposite, small value of R2
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Fig. 10. True and low pass filtered current and potential for experiment 3.
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Fig. 11. SOC estimation for experiment

ives high gain value with short transient but with a poor fit of
he real SOC, due to the amplification of the measurement error.
n Figs. 7 and 9 the estimated SOC, using both gain values, are
epicted for first and second experiments. The optimal gain value
an be obtained by knowing the value of R2. It can be obtained
rom the interpolation procedure in the identification stage. It must
e noted that as the interpolation error is smaller, the better the
stimates.

The study of different interpolation methods than the linear
egression used in this work, like splines [19], kernel [18], or Krig-
ng [20] between others, to obtain software sensors with minimum
rror will be grounds for future research.

With the model parameters and smoothing filter properly

elected in the identification stage, the SOC in third experiment
s performed and depicted in Fig 11. Also two different gain matrix,
2 = 10, and R2 = 0.1, was employed in order to show the effect on
he estimates. It must be noted that a good fitting of software sensor
arameter is a crucial point to improve the results.
er, with R2 = 10. Lower, with R2 = 0.1.

6. Conclusions

A complete electrochemical model of two electrodes of Ni–MH
rechargeable batteries for SOC estimation was presented. Taking
into account constructive reasons, the two-electrode model has
been reduced to a simpler one-electrode model which belongs to
the family of the Wiener models. The simplified model takes into
account only the slow current variations, which are in fact the com-
ponents that change the SOC. Using the kinetic equations, the two
parts of the Wiener model, the dynamic linear and the static nonlin-
earity were identified by using 1-D optimization method to tune the
parameters. The interval search is bounded by previous knowledge
of typical parameter values.
The proposed method allows the estimation of the state of
charge in Ni–MH rechargeable batteries using a simplified electro-
chemical based model by means of a software sensor and a Kalman
filter to estimate the concentration inside the Ni electrode. Using
this setup, minimum covariances of the estimation errors between
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eal and estimated concentrations due to external disturbances are
btained. Also the bound of the estimation errors are known. The
xpression of SOC as a function of the estimated concentrations
or different electrode particles geometry was given. The method
as used in experiments with commercial batteries reaching the

xpected performance.
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ppendix A.

The diffusion process in the Ni electrode is described by the
ylindrical form of Fick’s laws considering only the radial direction
coordinate z) as follows:

n(z, t) = −Dnc̄n
∂xn(z, t)

∂z
(48)

∂xn(z, t)
∂t

= Dn

(
∂2xn(z, t)

∂z2
+ 1

z

∂xn(z, t)
∂z

)
(49)

∂xn(z, t)
∂t

= − 1
c̄n z

∂ [zJn(z, t)]
∂z

, (50)

hereJn(z, t) is the flux of hydrogen diffusing from the surface to
he interior of the electrode at spatial position z and time t, and
n(z0, t) = If1 /(Fan). If each cell is small enough, the concentration
(zi, t) in the i − th cell (0 ≤ i ≤ N), (see Figure(2)), can be considered
onstant with input and output hydrogen flow given by J(zi, t) and
(zi+1, t) respectively. Using this spatial discretization together with
he forward and backward approximation of the derivative, Eqs.
48)–(50) can be written as follows:

n(zi, t) = −Dnc̄n

�z
(x(zi, t) − x(zi−1, t)) (51)

dx(zi, t)
dt

= − 1
c̄nz �z

(zi+1Jn(zi+1, t) − ziJn(zi, t)) , (52)

i

sing these relationships and considering a boundary condition for
he flux J(zN, t) = 0 at the active material/metallic substrate inter-
ace (z = Re), the diffusional process can be described by the set of
qs. (14)–(16).

[

[
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In a similar way, but considering the spherical geometry of the
metal hydride particles, the equations governing the H concentra-
tion profile in the MH electrode are given by:

Jm(z, t) = −Dm c̄m
∂xm(z, t)

∂z
(53)

∂xm(z, t)
∂t

= − 1
c̄mz2

∂
[
z2Jm(z, t)

]
∂z

, (54)

where Jm(z, t)Dm is the diffusion coefficient and Jm(z0, t) = If2 /(Fam)
being am the effective transfer area. A similar discrete-spatial
state model is derived for the metal electrode by just replacing
�z = Rp

N+1 with Rp the radium of the sphere, and di = z2
i+1/z2

i
=

(2i + 3)2/(2i + 1)2 for 1 ≤ i ≤ N.
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